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Low-Latency Tracking of Multiple Permanent Magnets

Cameron R. Taylor, Haley G. Abramson, and Hugh M. Herr

Abstract—Magnetic target tracking is a low-cost, portable,
and passive method for tracking materials wherein magnets are
physically attached or embedded without the need for line of
sight. Traditional magnet tracking techniques use optimization
algorithms to determine the positions and orientations of per-
manent magnets from magnetic field measurements. However,
such techniques are constrained by high latencies, primarily
due to the numerical calculation of the gradient. In this study,
we derive the analytic gradient for multiple-magnet tracking
and show a dramatic reduction in tracking latency. We design
a physical system comprising an array of magnetometers and
one or more spherical magnets. To validate the performance
of our tracking algorithm, we compare the magnet tracking
estimates with state-of-the-art motion capture measurements for
each of four distinct magnet sizes. We find comparable position
and orientation errors to state-of-the-art magnet tracking, but
demonstrate increased maximum bandwidths of 336%, 525%,
635%, and 773% for the simultaneous tracking of 1, 2, 3, and
4 magnets, respectively. We further show that it is possible to
extend the analytic gradient to account for disturbance fields,
and we demonstrate the simultaneous tracking of 1 to 4 magnets
with disturbance compensation. These findings extend the use of
magnetic target tracking to high-speed, real-time applications
requiring the tracking of one or more targets without the
constraint of a fixed magnetometer array. This advancement
enables applications such as low-latency augmented and virtual
reality interaction, volitional or reflexive control of prostheses and
exoskeletons, and simplified multi-degree-of-freedom magnetic
levitation.

Index Terms—Magnetic dipole tracking, position and orienta-
tion tracking, permanent magnets, analytic Jacobian, disturbance
field compensation, magnetic anomaly detection, passive wireless
device tracking, magnetization, sensors, human-computer inter-
faces, virtual reality, augmented reality

I. INTRODUCTION

MAGNETS have been used to track fingers [1], [2],
styli [3], jewelry [4], vibrating beams [5], endoscopes

[6], [7], catheters [8], tongues [9], jaws [10], bladders [11],
heart valves [12], and joints [13]–[15], and have also been
suggested for tracking other biological tissue such as muscle
[16]. As demonstrated by this extensive formative work on
magnet tracking, using permanent magnets as position markers
is advantageous because there is no need to power them
via wired or wireless power transmission. In addition, many
materials, such as wood, plastic, ceramic, rubber, and human
flesh (materials with magnetic permeability close to that of free
space) allow magnetic fields to pass through them undisturbed,
so magnets can be tracked through each material as if the
material was not present.
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The magnetic dipole model is widely used throughout the
literature to track permanent magnets. This model most accu-
rately characterizes the field around a uniformly magnetized
spherical object [17], but using the far field of magnetized
objects, the dipole model has also been used to track and
characterize nonspherical permanent magnets, electromagnets
[18], and ferromagnetic objects such as cars [19], spacecraft
[20], underwater magnetic anomalies [21], and mineral de-
posits [22].

A primary challenge in magnet tracking, however, is that
determining magnet states (i.e., locations, orientations, and
strengths) from an array of magnetic field sensors is not
guaranteed to have a closed form solution. Thus, the state of
a magnet is commonly determined using optimization tech-
niques [23] or neural networks [24], which for an increased
number of degrees of freedom historically suffer from large
latency or convergence to local minima [25].

Further, accurate magnet tracking also requires compen-
sation for disturbance fields, which is typically done as a
one-time offset for static scenarios or via an external device
such as an additional sensor [26] or magnetic shield [27].
Though the utility of these methods should not be understated,
they nonetheless present a challenge in some mobile contexts.
Recent foundational work has shown the ability to compensate
for disturbance fields using a magnetometer array [28], but this
compensation introduces additional delay to latencies already
unsuitable for high-bandwidth tracking of multiple magnets.

We present here an algorithm for tracking any number of
magnets of any size simultaneously with high accuracy and
low computational latency, while compensating for disturbance
fields in real time. We achieve these results via an analytic so-
lution to the derivative (i.e., the Jacobian matrix) of the magnet
tracking cost function with respect to each of the magnet state
parameters. Whereas a traditional magnet tracking optimiza-
tion must compute cost function data in each dimension to
numerically perform gradient descent, the analytic Jacobian
matrix provides a rapid, high-accuracy representation of the
gradient, and thus significantly reduces tracking delay.

While the use of an analytic Jacobian matrix has been
demonstrated previously for offline localization of multiple
static axisymmetric magnets [29], we specifically focus on the
tracking of spherical magnets with the dipole model in order
to optimize the speed of evaluation for real-time tracking. To
validate the performance of our tracking algorithm, we design
a physical system comprising an array of magnetometers and
one or more spherical magnets (diameters 2, 4, 8, and 16
mm). For these magnets, we compare the state estimates from
this tracking algorithm against state-of-the-art motion capture
measurements.
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II. MATERIALS AND METHODS

A. Tracking Algorithm

A commonly used method of tracking permanent mag-
nets utilizes an optimization algorithm. At each step of the
optimization, each of the magnet parameters (locations, ori-
entations, and/or strengths) is estimated. Note that magnet
strengths need not be estimated once they are known, but
estimating the magnet strengths using the tracking algorithm
can correct for errors in the factory specifications of magnets
as well as their relationship to sensor gains. The estimate of
magnet parameters is used to calculate a predicted magnetic
field at each known sensor location in a sensor array. Com-
paring the magnetic field prediction with the actual magnetic
field measurement at each sensor, a magnetic field prediction
error is then computed corresponding to the current estimate
of the magnet parameters. In the case of a gradient descent
optimization, the derivative of the prediction error (i.e., the
Jacobian matrix of the prediction error) is then determined
with respect to each of the magnet parameter estimates, and
these derivatives are used to update the magnet parameter
estimates until the prediction error is minimized. The magnet
parameters determined from the optimization solution are then
used as the initial estimate to the subsequent tracking step.

The derivatives of the magnetic field prediction error are
typically computed numerically. Computing these derivatives
numerically is time intensive because it requires the predic-
tion error to be computed at least once for every magnet
parameter being tracked. The added computational time places
limitations on real-time tracking bandwidth and, when the
tracked magnets change position rapidly, can result in tracking
instability.

We describe below a tracking algorithm, implementing the
use of analytic derivatives, to track spherical magnets via
an optimization algorithm. The analytic derivatives in this
tracking algorithm are implemented in a manner that has the
benefits of numerical stability and allows for a significant
decrease in latency compared with the latency inherent to other
algorithms. Further, this tracking method is extended to the
tracking of disturbance fields.

1) Cost Function: We will use the magnetic field prediction
error for our optimization cost function. At the ith sensor, the
magnetic field prediction error, Ei, is the difference between
the measured magnetic field B̃i and the predicted magnetic
field Bi,

Ei = Bi − B̃i. (1)

To compute the predicted magnetic field Bi, we use our
estimate of the magnet locations, orientations, and strengths.

If the estimated location of the jth magnet is (xj , yj , zj)
and the position of the ith sensor is (six, siy, siz), it follows
that a vector from the jth magnet to the ith sensor is given by

rij = (six − xj)x̂ + (siy − yj)ŷ + (siz − zj)ẑ, (2)

where, for simplicity, we will define x̄ij ȳij and z̄ij such that

rij = x̄ijx̂ + ȳijŷ + z̄ij ẑ. (3)

Using the positive z-axis as an arbitrarily-chosen reference,
the orientation of the jth magnet can be described by

mj = Rz(φj)Ry(θj)mj ẑ

= mj(sin θj cosφjx̂ + sin θj sinφjŷ + cos θj ẑ), (4)

where θj and φj are the magnet’s estimated orientation from
vertical and around vertical, respectively, and mj is the mag-
net’s strength, or magnetic moment. By the definition of the
magnetic moment, we have

mj =
Brj
µ0

4

3
πR3

j , (5)

where Brj is the jth magnet’s residual flux density, Rj is its
radius, and µ0 is the permeability of free space. If we define
the magnetic dipole weight of the jth magnet as

m̄j =
µ0

4π
mj, (6)

the strength of the magnet can be expressed more simply as

m̄j =
Brj
3
R3
j . (7)

Using the equation for the magnetic field of a dipole [17],
the magnetic field prediction Bi = (Bix, Biy, Biz) at the ith
sensor can then be expressed as

Bi = G +

j′=M∑
j′=1

(
3rij′(m̄

ᵀ
j′ · rij′)

r5
ij′

− m̄j′

r3
ij′

)
, (8)

where G = (Gx, Gy, Gz) is an estimate of the spatially
uniform disturbance field and M is the number of magnets.

Substituting (6), (4) and (3) into (8), the three components
of Bi are given by (8a), (8b), and (8c) below.

Bix = Gx +

j′=M∑
j′=1

m̄j′

(
3x̄ij′(sin θj′ cosφj′ x̄ij′ + sin θj′ sinφj′ ȳij′ + cos θj′ z̄ij′)

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

5/2
− sin θj′ cosφj′

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

3/2

)
(8a)

Biy = Gy +

j′=M∑
j′=1

m̄j′

(
3ȳij′(sin θj′ cosφj′ x̄ij′ + sin θj′ sinφj′ ȳij′ + cos θj′ z̄ij′)

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

5/2
− sin θj′ sinφj′

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

3/2

)
(8b)

Biz = Gz +

j′=M∑
j′=1

m̄j′

(
3z̄ij′(sin θj′ cosφj′ x̄ij′ + sin θj′ sinφj′ ȳij′ + cos θj′ z̄ij′)

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

5/2
− cos θj′

(x̄2
ij′ + ȳ2

ij′ + z̄2
ij′)

3/2

)
(8c)
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2) Analytic Jacobian: Having fully developed the cost
function (1) for our optimization, we now seek to form
the Jacobian matrix, a matrix of the derivatives of the cost
function elements with respect to each of the estimated magnet
parameters (xj , yj , zj , θj , φj and m̄j) for each of the magnets.

We know that the measured magnetic field B̃i does not vary
with respect to our estimated magnet parameters (for example,
∂/∂xjEi = ∂/∂xjBi), so the derivatives of the cost function
can be written as a function of Bi alone. Thus, the Jacobian
submatrix corresponding to the ith sensor and jth magnet can
be calculated as

Jij =


∂
∂xj

Eix
∂
∂yj

Eix
∂
∂zj

Eix
∂
∂θj

Eix
∂
∂φj

Eix
∂

∂m̄j
Eix

∂
∂xj

Eiy
∂
∂yj

Eiy
∂
∂zj

Eiy
∂
∂θj

Eiy
∂
∂φj

Eiy
∂

∂m̄j
Eiy

∂
∂xj

Eiz
∂
∂yj

Eiz
∂
∂zj

Eiz
∂
∂θj

Eiz
∂
∂φj

Eiz
∂

∂m̄j
Eiz



=


∂
∂xj

Bix
∂
∂yj

Bix
∂
∂zj

Bix
∂
∂θj

Bix
∂
∂φj

Bix
∂

∂m̄j
Bix

∂
∂xj

Biy
∂
∂yj

Biy
∂
∂zj

Biy
∂
∂θj

Biy
∂
∂φj

Biy
∂

∂m̄j
Biy

∂
∂xj

Biz
∂
∂yj

Biz
∂
∂zj

Biz
∂
∂θj

Biz
∂
∂φj

Biz
∂

∂m̄j
Biz

. (9)

The first three columns of derivatives in (9) are written in
terms of xj , yj , or zj , but Bi in (8a), (8b), and (8c) is written
in terms of x̄j , ȳj , and z̄j . From the definitions of x̄j , ȳj , and
z̄j in (3) we see that x̄ij , ȳij , and z̄ij are functions of xj , yj ,

and zj , respectively. The chain rule can thus be used as

∂Bi

∂xj
=
∂Bi

∂x̄ij

∂x̄ij
∂xj

+
∂Bi

∂ȳij

∂ȳij
∂xj

+
∂Bi

∂z̄ij

∂z̄ij
∂xj

(10)

=
∂Bi

∂x̄ij
(−1) +

∂Bi

∂ȳij
(0) +

∂Bi

∂z̄ij
(0)

for xj , and similarly for yj and zj , to get

Jij =

−
∂

∂x̄ij
Bix − ∂

∂ȳij
Bix − ∂

∂z̄ij
Bix

∂
∂θj

Bix
∂
∂φj

Bix
∂

∂m̄j
Bix

− ∂
∂x̄ij

Biy − ∂
∂ȳij

Biy − ∂
∂z̄ij

Biy
∂
∂θj

Biy
∂
∂φj

Biy
∂

∂m̄j
Biy

− ∂
∂x̄ij

Biz − ∂
∂ȳij

Biz − ∂
∂z̄ij

Biz
∂
∂θj

Biz
∂
∂φj

Biz
∂

∂m̄j
Biz

. (11)

These derivatives exist, and the analytic expressions for
the elements of (11) are given by (11a)-(11r) below. These
derivatives were calculated by hand and verified using a
symbolic equation solver [30]. Because of the many repeated
terms in (11a)-(11r), these elements are able to be efficiently
calculated using common subexpression elimination.

The full 3Nx6M Jacobian matrix is composed of all of
the Jacobian submatrices Jij across the N sensors and M
magnets, and is constructed as

J =


J11 J12

J21 J22

. . .

. . .
J1M

J2M

...
...

. . .
...

JN1 JN2 . . . JNM

 . (12)

− ∂
∂x̄ij

Bix = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3x̄ij(2x̄

2
ij − 3ȳ2

ij − 3z̄2
ij) sin θj cosφj + 3ȳij(4x̄

2
ij − ȳ2

ij − z̄2
ij) sin θj sinφj + 3z̄ij(4x̄

2
ij − ȳ2

ij − z̄2
ij) cos θj

)
(11a)

− ∂
∂x̄ij

Biy = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3ȳij(4x̄

2
ij − ȳ2

ij − z̄2
ij) sin θj cosφj + 3x̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) sin θj sinφj + 15x̄ij ȳij z̄ij cos θj
)

(11b)

− ∂
∂x̄ij

Biz = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3z̄ij(4x̄

2
ij − ȳ2

ij − z̄2
ij) sin θj cosφj + 15x̄ij ȳij z̄ij sin θj sinφj + 3x̄ij(−x̄2

ij − ȳ2
ij + 4z̄2

ij) cos θj
)

(11c)

− ∂
∂ȳij

Bix = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3ȳij(4x̄

2
ij − ȳ2

ij − z̄2
ij) sin θj cosφj + 3x̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) sin θj sinφj + 15x̄ij ȳij z̄ij cos θj
)

(11d)

− ∂
∂ȳij

Biy = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3x̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) sin θj cosφj + 3ȳij(−3x̄2
ij + 2ȳ2

ij − 3z̄2
ij) sin θj sinφj + 3z̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) cos θj
) (11e)

− ∂
∂ȳij

Biz = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
15x̄ij ȳij z̄ij sin θj cosφj + 3z̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) sin θj sinφj + 3ȳij(−x̄2
ij − ȳ2

ij + 4z̄2
ij) cos θj

)
(11f)

− ∂
∂z̄ij

Bix = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3z̄ij(4x̄

2
ij − ȳ2

ij − z̄2
ij) sin θj cosφj + 15x̄ij ȳij z̄ij sin θj sinφj + 3x̄ij(−x̄2

ij − ȳ2
ij + 4z̄2

ij) cos θj
)

(11g)

− ∂
∂z̄ij

Biy = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
15x̄ij ȳij z̄ij sin θj cosφj + 3z̄ij(−x̄2

ij + 4ȳ2
ij − z̄2

ij) sin θj sinφj + 3ȳij(−x̄2
ij − ȳ2

ij + 4z̄2
ij) cos θj

)
(11h)

− ∂
∂z̄ij

Biz = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 7/2

(
3x̄ij(−x̄2

ij − ȳ2
ij + 4z̄2

ij) sin θj cosφj + 3ȳij(−x̄2
ij − ȳ2

ij + 4z̄2
ij) sin θj sinφj + 3z̄ij(−3x̄2

ij − 3ȳ2
ij + 2z̄2

ij) cos θj
) (11i)

∂
∂θj

Bix = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
(2x̄2

ij − ȳ2
ij − z̄2

ij) cosφj cos θj + 3x̄ij ȳij sinφj cos θj − 3x̄ij z̄ij sin θj
)

(11j)

∂
∂θj

Biy = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3x̄ij ȳij cosφj cos θj + (−x̄2

ij + 2ȳ2
ij − z̄2

ij) sinφj cos θj − 3ȳij z̄ij sin θj
) (11k)

∂
∂θj

Biz = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3x̄ij z̄ij cosφj cos θj + 3ȳij z̄ij sinφj cos θj − (−x̄2

ij − ȳ2
ij + 2z̄2

ij) sin θj
) (11l)

∂
∂φj

Bix = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3x̄ij ȳij sin θj cosφj − (2x̄2

ij − ȳ2
ij − z̄2

ij) sin θj sinφj
) (11m)

∂
∂φj

Biy = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
(−x̄2

ij + 2ȳ2
ij − z̄2

ij) sin θj cosφj − 3x̄ij ȳij sin θj sinφj
) (11n)

∂
∂φj

Biz = m̄j(x̄
2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3ȳij z̄ij sin θj cosφj − 3x̄ij z̄ij sin θj sinφj

)
(11o)

∂
∂m̄j

Bix = (x̄2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
(2x̄2

ij − ȳ2
ij − z̄2

ij) sin θj cosφj + 3x̄ij ȳij sin θj sinφj + 3x̄ij z̄ij cos θj
)

(11p)

∂
∂m̄j

Biy = (x̄2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3x̄ij ȳij sin θj cosφj + (−x̄2

ij + 2ȳ2
ij − z̄2

ij) sin θj sinφj + 3ȳij z̄ij cos θj
)

(11q)

∂
∂m̄j

Biz = (x̄2
ij + ȳ2

ij + z̄2
ij)
− 5/2

(
3x̄ij z̄ij sin θj cosφj + 3ȳij z̄ij sin θj sinφj + (−x̄2

ij − ȳ2
ij + 2z̄2

ij) cos θj
)

(11r)
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A B

Fig. 1. 4x4 Grid of Magnetometers and Tracking Wands with Magnets. (A) A 4x4 magnetometer array was created using a 3d-printed structure with
reflective markers for tracking. (B) Each magnet was attached north-pole-up to a unique 3d-printed wand with reflective markers for tracking.

3) Disturbance Field Compensation: Assuming that there
is a uniform disturbance field seen across all magnetic field
sensors (from, for example, the geomagnetic field), its Jaco-
bian submatrix would be given by

Di =


∂

∂Gx
Bix

∂
∂Gy

Bix
∂
∂Gz

Bix
∂

∂Gx
Biy

∂
∂Gy

Biy
∂
∂Gz

Biy
∂

∂Gx
Biz

∂
∂Gy

Biz
∂
∂Gz

Biz


=

1 0 0
0 1 0
0 0 1

 = I3, (13)

the 3x3 identity matrix. The columns of the Jacobian subma-
trix corresponding to the disturbance field are thus given by

D =


I3

I3

...
I3

 , (14)

a 3Nx3 matrix. Extending the Jacobian matrix (12) with the
result in (14), we get the augmented Jacobian matrix

Ĵ =
[

J D
]
. (15)

This augmented matrix assists in providing robust tracking
information under sensor motion or far-field disturbance.

4) Calibration: The sensor array was calibrated using
rotation in a uniform ambient field to remove offsets and
distortions [31], [32], and then the sensors were scaled relative
to one another to achieve equivalent full-scale ranges. Spike
noise was filtered out using a three-point median filter.

B. Hardware

The tracking algorithm was written in C++ and implemented
an unconstrained Levenberg-Marquardt algorithm via C/C++
Minpack [33]. The algorithm was run in real-time on a

Macbook Air (13-inch, Early 2014) with 8 GB of RAM and
an Intel i7 CPU running at 1.7 GHz.

The three-axis magnetic field was measured using 16
LSM9DS1 iNEMO inertial modules (STMicroelectronics) at
a sampling rate of 1 kHz. The measurements were communi-
cated via SPI (10 MHz clock) to a Teensy 3.6 microcontroller
(PJRC) and relayed to the Macbook Air via USB.

Spherical chrome-plated neodymium magnets (SuperMag-
netMan) were used in this study, with diameters 2 mm
(SP0200), 4 mm (SP0400), 8 mm (SP100352), and 16 mm
(SP1062). Four 8 mm diameter magnets were used to validate
the tracking of multiple magnets at once. The magnetic dipole
strength of each magnet was measured by tracking it with six
degrees of freedom (including the magnetic dipole strength),
after which the median of the tracked dipole strength was
used as the known magnetic dipole strength for five-degree-
of-freedom tracking.

A Connex 500 printer (Stratasys) was used to print a flat
4x4 grid (100mm by 100mm) for the magnetic field sensors
(see Fig. 1A) and one unique tracking wand for each of the
permanent magnets (see Fig. 1B). The sensor array and magnet
wands were each marked with four 9.5 mm Reflective Pearl
Markers (B&L Engineering). Seven T40S infrared cameras
(Vicon Motion Systems), calibrated to an average resolution
of 31 µm (standard deviation of 9 µm) were used to track the
sensor array and magnets.

C. Experiments

To test the latency, accuracy, and disturbance compensation
of our algorithm, we first fixed the sensor array in position and
orientation to maintain a consistent ambient disturbance field.
Motion capture tracking wands were then used to manually
move the one or more magnets over the sensor array, varying
position and orientation, for one minute. In all cases, distur-
bance compensation was used while tracking the magnets.
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1) Magnet Tracking Latency: To compare the latency of
tracking methods using a numerical, an analytic, and a code-
optimized Jacobian matrix, one, two, three, and then four
8 mm diameter magnets were simultaneously tracked in real
time using the code-optimized Jacobian matrix method. All
raw magnetic field data was saved and used to re-track
the magnets offline with the non-code-optimized-analytic and
numerical Jacobian matrix tracking methods. This provided
a one-to-one comparison of tracking latencies for the given
inputs.

2) Magnet Tracking Accuracy: Separate tracking sessions
were used to individually track a 2 mm, a 4 mm, an 8 mm,
and a 16 mm diameter magnet. For each of these magnets
tracked individually, as well as for the four 8 mm diameter
magnets tracked simultaneously, reflective marker positions
were used in post-processing to determine the positions and
orientations of the magnets relative to the magnetometer array.
These positions and orientations were then compared against
the positions and orientations predicted in real time by the
magnetometer array.

For each magnet, positions and position errors were then
normalized by dividing by the magnet’s radius. To demonstrate
the utility of this normalization, we multiply the first and
second summation terms of (8) by 1

R5
j′

/
1
R5

j′
and 1

R3
j′

/
1
R3

j′
,

respectively, to get

Bi = G +

j′=M∑
j′=0

(3
rij′

Rj′
(

m̄ᵀ
j′

R3
j′
· rij′

Rj′
)( rij′

Rj′

)5 −

m̄j′

R3
j′( rij′

Rj′

)3). (16)

Defining the unit magnetic moment vector m̂j ,
m̄j

m̄j
and using

(7) gives m̄j

R3
j

=
Brj

3 m̂j. If we then define the dimensionless

relative position vector řij ,
rij
Rj

, we can simplify (16) as

Bi = G +

j′=M∑
j′=0

Brj′

(
řij′(m̂

ᵀ
j′ · řij′)

ř5
ij′

− m̂j′

3ř3
ij′

)
, (17)

demonstrating that the magnetic field from a magnet-
magnetometer system is scale invariant. Thus, magnet-
magnetometer systems with equivalent normalized sensor and
magnet positions will, given the same sensor noise, produce
the same normalized position error

ěpj =
epj
Rj

. (18)

This scale invariance does require, however, that the residual
flux densities Brj′ in (17) be equivalent from one system
to the next. To compare our different normalized magnet-
magnetometer systems, we define a reference residual flux
density, which we will fix arbitrarily as Brref = 1.2 T.
Rearranging (7) with this reference residual flux density, we
can fully represent the strength of a magnet by its equivalent
radius, as

Reqj = 3

√
3m̄j

Brref
. (19)

Equation (19) was used to determine the radius of each
magnet and (18) was used to normalize the position error. Ori-
entation error and normalized position error were then plotted
against the normalized average distance of each magnet,

řavgj =
1

N

N∑
i=1

‖řij‖ , (20)

where N is the number of sensors. This is the average linear
distance from a given magnet to all of the sensors, normalized
by dividing by the equivalent radius of the tracked magnet.

The common logarithm was applied to the orientation and
normalized position errors, and Stata 15.1 [34] was used to
fit a linear regression of log error versus normalized average
distance from sensors, using the robust option to account for
heteroskedasticity in the standard errors.

3) Disturbance Tracking Accuracy: In the absence of any
magnets, the ambient disturbance field was measured for one
minute on all of the sensors. This ambient field data was
then temporally and spatially averaged to give a measured
disturbance field vector, G̃ = (G̃x, G̃y, G̃z). For a given
sample, the disturbance field tracking error eG was then
calculated against this measured disturbance field as

eG =

∥∥∥G− G̃
∥∥∥∥∥∥G̃∥∥∥ . (21)

III. RESULTS

A. Magnet Tracking Latency

Using an analytically computed Jacobian matrix, multiple
magnets were tracked simultaneously with low tracking la-
tency while compensating for a magnetic disturbance field
(see supplemental video for a demonstration of the tracking).
Fig. 2 displays these results, showing tracking latency plotted
versus degrees of freedom. Tracking latency is defined here
as the time required to determine the position of one or more
magnets once the magnetic field measurements are known.
The number of degrees of freedom is the total number of
estimated parameters for all tracked magnets (not including
the number of parameters needed to track the disturbance
field). For instance, a magnet of known dipole strength has
five degrees of freedom, two magnets of known strength
together have ten degrees of freedom, and four magnets of
known strength and known orientation, but unknown position,
together have twelve degrees of freedom. To create a bench-
mark for comparison, we searched the literature for all magnet
tracking applications where latency was reported. Wherever
latency was not reported, we inverted the magnet-tracking
sampling rate as a proxy for latency. Otherwise, latencies are
reported as given or using the 90th percentile latency of the
reported values. We also note that the comparison is limited by
a lack of data on computing systems used for tracking, so the
latencies from past work are reported for baseline reference
only. These tracking latencies from past literature [1], [8], [16],
[24], [25], [35]–[44] are shown in Fig. 2. Only latencies from
real-time physical magnet tracking are included.
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Fig. 2. Comparison of Tracking Latencies. When tracking one to four magnets, each with five degrees of freedom, analytically calculating the gradient of
optimization error results in a reduced 90th-percentile tracking latency (plotted in purple) in magnet tracking when compared to numerical calculation of the
gradient (plotted in orange). A further drop in latency is observed when the analytic calculation of the gradient is implemented with common subexpression
elimination (plotted in green). Tracking latencies (blue) from past work are plotted for reference. Trends are indicated by cubic splines. See Fig. 6 in the
appendix for the distribution of latencies.

To establish an experimentally relevant baseline for the
tracking latency, we utilized a traditionally-implemented algo-
rithm, the Levenberg-Marquardt algorithm, with a numerical
Jacobian matrix to track one to four magnets with disturbance
compensation. In relation to previous work where similar
computing power is used, we attribute the improvement in
latency of this new baseline to our use of a compiled lan-
guage. Implementing this same algorithm with an analytically-
computed Jacobian matrix, we found a large increase in speed
(see Fig. 2). For 1, 2, 3 and 4 magnets (5, 10, 15, and 20
degrees of freedom), the use of an analytic Jacobian matrix
increases the maximum bandwidth by 39%, 92%, 156%, and
202%, respectively. Implementing this same algorithm again
using common subexpression elimination in the calculation of
the analytic Jacobian matrix, we found an even larger increase
in maximum bandwidth of 336%, 525%, 635%, and 773% for
1, 2, 3 and 4 magnets, respectively.

B. Tracking Accuracy for Individual Magnets

The same cost function is optimized whether by numerical
or analytic calculation of the Jacobian, so the tracking error
is unchanged between one method of calculation and the
other. We wished to characterize this tracking error with our
system for various magnet diameters. Tracking error as a
function of height has been addressed in the literature [45],
but there is currently no standard for comparing errors across
differing sensor array geometries as well as differing magnet

strengths, orientations, and general positions relative to the
sensor array. Using the average distance from all sensors
to each magnet allows us to characterize the error while
condensing these dimensions, with temporal variance in sensor
noise resulting in a distribution of tracking accuracy for a given
magnet position. With this characterization, Fig. 3A shows the
measured accuracy of our system, whereas Fig. 3B shows a
real time trajectory from the magnet tracking compared against
state-of-the-art motion capture. As discussed in section II-C2,
the position errors and average distance from sensors in Fig.
3A are normalized by the radius of each magnet.

C. Tracking Accuracy for Multiple Magnets

To test the accuracy of tracking multiple magnets at once,
we applied this same error characterization to the tracking
of multiple magnets. Fig. 4 shows this error characterization
applied to the simultaneous tracking of four 8 mm diameter
magnets.

D. Magnetic Disturbance Field Tracking

We were interested in whether our algorithm could detect a
spatially uniform disturbance field without prior information
about the ambient field. To verify this, the algorithm was
initialized at the start of tracking with a disturbance estimate
of zero. The disturbance was then tracked and recorded while
tracking individual magnets with diameters 2 mm, 4 mm,
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A B

Position Error Orientation Error
Diameter Slope Intercept Std Error R2 Slope Intercept Std Error R2

2 0.013 0.024 0.004 0.206 -1.214 0.012 0.003 0.227
4 0.025 -0.586 0.004 0.490 -1.583 0.024 0.003 0.503
8 0.033 -0.727 0.004 0.454 -2.196 0.047 0.004 0.588

16 0.057 -1.196 0.004 0.428 -1.828 0.044 0.005 0.274

1

Fig. 3. Empirical Position and Orientation Accuracy for Separate Magnets. (A) Orientation and normalized position errors are plotted versus the
normalized average distance from each magnet to all magnetic field sensors, for 2 mm, 4 mm, 8 mm, and 16 mm diameter magnets (shown in blue, orange,
red, and cyan, respectively). For each magnet, the position errors and the average distances are normalized by dividing by the magnet’s radius. These errors
represent the errors from a single magnet being tracked. Linear regression information on the common log of the errors, with standard errors, is supplied to
describe the variance of the data. (B) A representative five-second time interval is shown when tracking an 8 mm diameter magnet (shown in blue) versus
motion capture (shown in orange).

Position Error Orientation Error
Magnet Slope Intercept Std Error R2 Slope Intercept Std Error R2

a 0.050 -0.929 0.013 0.257 0.056 -2.135 0.012 0.274
b 0.061 -0.986 0.010 0.440 0.062 -2.12 0.011 0.418
c 0.038 -0.593 0.014 0.146 0.059 -2.251 0.016 0.246
d 0.068 -1.349 0.016 0.356 0.052 -1.977 0.013 0.240

1

Fig. 4. Empirical Position and Orientation Accuracy for Four Magnets
Tracked Together. For four 8 mm diameter magnets tracked simultaneously,
the orientation and normalized position errors are plotted versus the normal-
ized average distance from each magnet to all magnetic field sensors (blue,
orange, red, and cyan for magnets a, b, c, and d respectively). For each magnet,
the position errors and the average distances are normalized by dividing by
the magnet radius. Linear regression information on the common log of the
errors, with standard errors, is provided to describe the variance of the data.
The errors correspond to each individual 8 mm diameter magnet as the four
magnets are tracked simultaneously (compare with the 8 mm diameter magnet
tracked individually in Fig. 3A).

8 mm, and 16 mm, as well as while tracking two, three,
and four 8 mm magnets simultaneously (see Fig. 5). When
tracking magnetic disturbances for the individual magnets with
diameters 2 mm, 4 mm, 8 mm, and 16 mm, the mean errors
of the magnetic disturbances were 1.25%, 1.24%, 2.52%, and

8.92%, respectively. While tracking two, three, and four 8 mm
magnets simultaneously, the mean errors were 4.00%, 5.90%,
and 7.93%, respectively. In summary, the algorithm was able
to successfully track disturbances in real time for individual
magnets ranging from 2 mm to 16 mm in size, as well as for
simultaneous tracking of four magnets at the fixed size of 8
mm. These results underscore the applicability of the algorithm
for the cancellation of magnetic disturbance fields in mobile
applications comprising magnets of different size and number.

IV. DISCUSSION

A. Analysis of Results

Our objective was to show that multiple magnets can be
tracked with low latency for mobile tracking applications and
to characterize the error associated with our magnet tracking
system. The tracking latency of this algorithm increases as
O(M3 +M2N), where M is the number of magnets and N
is the number of sensors [46]. Thus, though Fig. 2 shows
how tracking latency increases with number of magnets,
additional sensors would also increase the tracking latency.
Tracking error on the other hand, typically decreases with
an increasing number of sensors [38], resulting in a trade-
off between tracking latency and tracking error. As reflected
in Figs. 3 and 4, sensor noise limits the distance from the
sensing array because of decreased signal-to-noise ratio, due
chiefly to Johnson and flicker noise from the magnetic field
sensors.

At closer range, tracking error is more dependent upon the
validity of the dipole model. The dipole model can be applied
to nonspherical magnets with differing levels of accuracy
[47], but we have chosen to track spherical magnets because,
when magnetized uniformly, they are exactly described as
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Fig. 5. Measured vs. Tracked Disturbance. Vertical black lines describe the
magnetic field disturbance as measured before the introduction of permanent
magnets to the system. The distributions describe the three components of
magnetic field disturbance (blue, orange and green for disturbance in the x, y,
and z directions, respectively) as tracked by the algorithm for the individual
magnets with diameters 2 mm, 4 mm, 8 mm, and 16 mm, as well as while
tracking two, three and four 8 mm diameter magnets simultaneously.

dipoles [17]. However, in practice permanent magnets are
not magnetized with perfect uniformity. This magnetization
inhomogeneity causes the field from a magnetic sphere to
differ from that of a perfect dipole, and this contributes to
the tracking error observed close to the sensor array.

In Figs. 3 and 4, linear fits of the common log of the errors,
with standard errors, represent the error as distance from the
sensing array increases. The intercepts roughly suggest the best
accuracy that can be achieved with the given sensor geometry
and sensor noise level, though in practice zero average distance
to all sensors cannot be achieved. The slopes of these linear
fits represent how error increases as distance from the array
increases. Normalized magnet-magnetometer systems corre-
sponding to smaller magnet radii have lower slopes but higher
intercepts, suggesting that sensor array geometries of greater
normalized width (i.e., those corresponding to sensors that
are farther apart or magnets that are smaller) allow a larger
tracking volume for a given minimum accuracy at the cost of
reduced maximum accuracy.

As shown in Fig. 4, when tracking four magnets at once the
linear regression fits of the log error have higher slopes, but
the intercepts are still low. This suggests that multiple magnets
can be tracked with high accuracies at close range using this
algorithm, but that with multiple magnets the accuracy drops
more quickly as the magnets are moved away from the sensors.

When tracking the disturbance field (see Fig. 5), the al-
gorithm was not initialized with any information about the
ambient field. This shows that the tracking algorithm is able
to detect in real time a spatially uniform disturbance field
without prior knowledge of the field. Though a static sensor
array configuration was used for validating accuracy in this
investigation, the algorithm is capable in principle of tracking

the disturbance field even when the sensor array varies in
position and orientation and the field varies temporally. Such
tracking robustness suggests this algorithm can be applied to
mobile applications.

B. Applications

This work makes possible new high-bandwidth applications
for magnet tracking. For example, real-time high-bandwidth
magnet tracking enables improved position feedback for
closed-loop control, such as for robotics, multi-degree-of-
freedom magnetic levitation, low-latency augmented and vir-
tual reality human-computer interaction, and high-fidelity con-
trol of prostheses and exoskeletons. Further, this work can be
applied to real-time body motion capture using multi-degree-
of-freedom magnet-based goniometry at multiple joints, or to
detailed facial tracking using a large number of small magnets.

C. Limitations and Future Work

This work is limited to five-degree-of-freedom pose tracking
for each magnet. This is because the magnetic field of an
axially symmetric magnet is also axially symmetric, and
thus its orientation can be specified from its magnetic field
with no more than two parameters. Previous work demon-
strates six-degree-of-freedom pose tracking using multiple
non-symmetrically attached magnets on a rigid object [48].
The implementation of an analytic Jacobian matrix for six-
degree-of-freedom pose tracking via constrained equations is
an important area of future work and has immediate ap-
plications to tool-tracking in augmented and virtual reality.
Previous work has also shown six-degree-of-freedom tracking
of a sensor array relative to a single magnet, but this requires
the use of an inertial measurement unit (IMU) [49]. Using
multiple non-symmetrically fixed magnets, as in [48], a sensor
array could be tracked without the need for an IMU. For
applications where tracked devices can be powered, this would
facilitate the independent high-speed tracking of several sensor
arrays without a marginal cost in tracking latency.

This work is also limited to the tracking of spherical mag-
nets or to the tracking of nonspherical magnets at far field. To
accurately track nonspherical cylindrically-symmetric magnets
(e.g., axially-magnetized cylinders) at close range, the use of
higher order multipole expansions should be used. Previous
work has implemented an analytic Jacobian corresponding to
higher-order multipole expansions, but their derivation requires
a zenith-length constraint which may affect the optimization
convergence [29]. It should be investigated whether or not
these higher-order multipole expansions can be reparametrized
in terms of two orientation parameters. If so, it is expected
that common subexpression elimination could be applied to
these higher-order multipole expansions to achieve similar
improvements in real-time tracking bandwidth.

Because the algorithm attempts to fit both a uniform field
and one or more dipole fields to the magnetic field data, the
uniform component of the magnetic field not accounted for by
the dipole models is erroneously seen as part of the disturbance
field. The size of this magnetic field not accounted for by the
dipole model increases with increasing magnet diameter for a
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given percent error in magnetic dipole strength measurement,
as well as for a given magnetization inhomogeneity. As seen
in Fig. 5, this means that larger magnet diameters result
in larger deviations in the predicted disturbance field. This
suggests that this work is limited in the accuracy of its
measurement of magnetic dipole strength. The accuracy of the
magnetic dipole strength measurement could be improved by
combining multiple magnetic field measurements into a single
optimization, as in [50].

The disturbance compensation implemented here assumes
that the magnetic disturbance field is spatially uniform, so the
spatially nonuniform components of the disturbance were not
accounted for. These nonlinear components could be corrected
for by introducing spatial gradient terms in each dimension
(at the cost of higher complexity), but the effect of nonlinear
disturbance compensation on tracking accuracy would need to
be investigated.

This work did not investigate the tracking of multiple mag-
nets of different sizes, nor did it investigate the tracking accu-
racies or tracking latencies associated with different numbers
of sensors or different sensor geometries. In particular, optimal
sensor geometries should be a focus of future investigation.

V. CONCLUSION

In this paper we derived the analytic Jacobian matrix for
magnetic dipoles and demonstrated a dramatic increase in
magnet tracking bandwidth without compromising for accu-
racy. This increase in bandwidth allows for the tracking of
multiple magnets in real time while compensating for ambient
magnetic field disturbances. While, at near field, this method
only tracks with high accuracy for spherical magnets, we hope
that future researchers can leverage our derivation to develop
high-bandwidth magnet tracking algorithms for other magnet
geometries.

APPENDIX

Fig. 6. Tracking latencies for simultaneous tracking of one to four
magnets. Tracking latencies are shown for tracking one, two, three, and
four magnets at once. Histograms represent tracking using Jacobian matrices
calculated numerically (orange), analytically (purple), and utilizing common
subexpression elimination (green).
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